A posteriori FE error control for p-Laplacian by gradient recovery in quasi-norm

نویسندگان

  • Carsten Carstensen
  • Wenbin Liu
  • Ningning Yan
چکیده

A posteriori error estimators based on quasi-norm gradient recovery are established for the finite element approximation of the p-Laplacian on unstructured meshes. The new a posteriori error estimators provide both upper and lower bounds in the quasi-norm for the discretization error. The main tools for the proofs of reliability are approximation error estimates for a local approximation operator in the quasi-norm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RELIABLE AND EFFICIENT A POSTERIORI ERROR ESTIMATES FOR FINITE ELEMENT APPROXIMATIONS OF THE PARABOLIC p-LAPLACIAN

We generalize the a posteriori techniques for the linear heat equation in [Ver03] to the case of the nonlinear parabolic p-Laplace problem thereby proving reliable and efficient a posteriori error estimates for a fully discrete implicite Euler Galerkin finite element scheme. The error is analyzed using the so-called quasi-norm and a related dual error expression. This leads to equivalence of th...

متن کامل

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

QUASI-NORM TECHNIQUES FOR FINITE ELEMENT APPROXIMATION OF p-LAPLAICAN

The p-Laplacian problem is one of the typical examples of degenerate nonlinear systems arising from nonlinear diffusion and filtration, powerlaw materials and quasi-Newtonian flows. In this article we give a survey of quasi-norm techniques to establish optimal error estimates for finite element approximation of p-Laplacian.

متن کامل

Analysis of the Superconvergent Patch Recovery Technique and a Posteriori Error Estimator in the Finite Element Method (ii)

SUMMARY This is the second in a series of two papers in which the patch recovery technique proposed by Zienkiewicz and Zhu 1]-3] is analyzed. In the rst paper 4], we have shown that the recovered derivative by the least squares tting is superconvergent for the two point boundary value problems. In the present work, we consider the two dimensional case in which the tensor product elements are us...

متن کامل

Gradient Recovery in Adaptive Finite Element Methods for Parabolic Problems

Abstract. We derive energy-norm a posteriori error bounds, using gradient recovery (ZZ) estimators to control the spatial error, for fully discrete schemes for the linear heat equation. This appears to be the first completely rigorous derivation of ZZ estimators for fully discrete schemes for evolution problems, without any restrictive assumption on the timestep size. An essential tool for the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 75  شماره 

صفحات  -

تاریخ انتشار 2006